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The planning of visually guided reaches is accomplished by
independent specification of extent and direction. We investi-
gated whether this separation of extent and direction planning for
well practiced movements could be explained by differences in
the adaptation to extent and directional errors during motor
learning. We compared the time course and generalization of
adaptation with two types of screen cursor transformation that
altered the relationship between hand space and screen space.
The first was a gain change that induced extent errors and
required subjects to learn a new scaling factor. The second was
a screen cursor rotation that induced directional errors and re-
quired subjects to learn new reference axes. Subjects learned a
new scaling factor at the same rate when training with one or
multiple target distances, whereas learning new reference axes
took longer and was less complete when training with multiple

compared with one target direction. After training to a single
target, subjects were able to transfer learning of a new scaling
factor to previously unvisited distances and directions. In con-
trast, generalization of rotation adaptation was incomplete; there
was transfer across distances and arm configurations but not
across directions. Learning a rotated reference frame only oc-
curred after multiple target directions were sampled during train-
ing. These results suggest the separate processing of extent and
directional errors by the brain and support the idea that reaching
movements are planned as a hand-centered vector whose extent
and direction are established via learning a scaling factor and
reference axes.

Key words: vectorial planning; motor learning; visuomotor trans-
formations; reaching movements; psychophysics; generalization

In planning reaches to visual targets the nervous system transforms
information about target location into time-varying sets of muscle
activations and joint torques that bring the hand to the desired
position. Converging psychophysical and neurophysiological evi-
dence suggests that it accomplishes this via a series of sensorimotor
transformations in which the target and the movement are recoded
in a series of successive representations of extrinsic and intrinsic
space (Soechting and Flanders, 1989). At early stages of planning,
the spatial location of the target is remapped from retinotopic into
egocentric (eye-, head-, or shoulder-centered) coordinates (Mcln-
tyre et al., 1997; Carrozzo et al., 1999). Vectorial planning hypoth-
eses posit that target information is combined with hand position
information (Ghilardi et al., 1995; Vindras et al., 1998) to form a
simplified hand-centered plan of the intended movement trajectory
as an extent and direction in extrinsic space (Gordon et al., 1994a;
Vindras and Viviani, 1998). Movement extent is determined by
linearly scaling a stereotyped bell-shaped velocity profile, whereas
movement duration is set by task context (Ghez and Krakauer,
2000). Importantly, planning an extent and a direction from the
hand requires establishing a scaling factor relating target distance
to a peak velocity and hand-centered reference axes relative to an
egocentric reference frame. For movements to be accurate in a
variety of tasks with different spatial characteristics, both opera-
tions must be under adaptive control. For example, when using a
computer, if the screen and pad are displaced from in front of the
body and the distance of the head from the screen changes, both
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the reference frame and scaling factor must change to remain
accurate with the computer mouse.

This paper examines whether, as would be predicted in a vecto-
rial framework, errors in extent and direction are processed differ-
ently for adaptive learning. To address this question we compared
the time course of adaptation and the degree of generalization
across work space parameters for two conditions that separately
perturbed the scaling and reference axes of the visuomotor trans-
formation. In one condition, systematic extent errors were intro-
duced by changing the gain of the hand path display; in the other,
directional biases were introduced by rotating the displayed hand
path around the initial position (Cunningham, 1989; Roby-Brami
and Burnod, 1995; Pine et al., 1996). The change in display gain
required subjects to rescale vector amplitude, whereas the rotation
required reorienting vector direction. We focused our analysis on
early trajectory variables rather than end points to reduce the
contributions of feedback (Gordon et al., 1994a; Messier and
Kalaska, 1999) and to separate vectorial parameters from position
parameters (Paillard, 1996). The emphasis in all experiments was
to determine whether learning achieved for a given target remained
local or generalized to other locations in the work space, because
patterns of generalization provide insight about the representation
of internal models in the nervous system (Imamizu et al., 1995;
Ghahramani and Wolpert, 1997).

Parts of this paper have been published previously (Krakauer et
al., 1996, 1997, 1999b; for review, see Ghez et al., 2000).

MATERIALS AND METHODS
Subjects

Fifty-nine right-handed subjects (48 men and 11 women; aged 18—40 years)
were in the study. All were naive to the purpose of the experiments, signed
an institutionally approved consent form, and were paid to participate. To
avoid unwanted crossover effects, we examined separate groups of subjects
for adaptation to gain changes and rotation. Separate groups of subjects
were also used when comparing the effects of target number on the time
course and generalization of learning. In the single-target training exper-
iments (for both gain and rotation), the same six subjects were trained on
four separate single targets but only on one of these targets on any given
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day. Several days intervened between each training day. This was done to
minimize crossover effects for single targets.

Apparatus

Subjects sat facing a computer monitor (17 X 12 cm) at eye level (distance,
72 cm) and controlled a screen cursor by moving a hand-held indicator
across the surface of a horizontal digitizing tablet (sampling rate, 200 Hz)
with their right arm. The elbow was kept at shoulder level by an airsled
supporting the forearm, the shoulder was restrained to prevent translation
in the A-P plane, and the wrist was splinted in the neutral position. In all
experiments, except one, which examined generalization of learning across
the work space, the starting configuration was with the shoulder at 45° and
the elbow at 90°. An opaque shield prevented subjects from seeing their
hand or arm at all times.

General experimental procedure

Subjects were required to reposition the screen cursor from a common
central origin to a series of peripheral circular targets displayed on the
screen (see below and figures for details of particular target sets; all
distances refer to screen distances). Subjects were instructed to make
straight and uncorrected out-and-back movements with sharp reversals in
the target and to pause briefly in the starting position before moving to the
next target. The signal to move was a tone synchronous with a particular
target changing from white to black. The tones occurred at an interval of
1.25 sec. Subjects could be tested with or without screen cursor feedback of
hand position. An air jet positioned above the starting position directed a
stream of air onto the knuckle of the forefinger, allowing subjects to
recenter their hand when visual feedback was absent.

Each experiment was conducted with six subjects and consisted of four
blocks of trials. The first was a “familiarization” block of 88 trials in which
subjects moved to all targets in the relevant target set in the absence of any
perturbations (cursor-feedback gain, 1/1; leftward hand movement caused
leftward cursor movement) and with continuous cursor feedback. The
second was a “control” block of trials that consisted of both feedback and
no feedback targets. Feedback was provided to the target(s) that would be
used for training in the subsequent training block; no feedback was
provided to the other targets. Subjects made ~10 movements per target.
The third was a “training” block in which subjects were trained on either
one of two screen cursor perturbations over 144 trials. One perturbation
altered the gain relationship between the distance moved on the screen and
the distance moved on the tablet from 1/1 to 1.5/1. The other perturbation
altered the direction of cursor movement relative to the hand movement
on the tablet counterclockwise (CCW) by 30°. These gain and rotation
values were chosen because they cause predicted linear errors of equal
magnitude.

Training with the gain change and the rotation was with either one or
more targets. When multiple targets were presented, they were at various
distances and/or directions from the starting position. Data from the
training blocks were used to determine the time course of learning. Finally,
there was a “testing” block that was identical to the control block except
that either the gain or rotation perturbation was imposed. Thus, in the
testing block, subjects were provided with visual feedback (refresher
feedback) to the targets they had trained to but not to any others.
Differences between the control and testing blocks were used to generate
the generalization data. For directional data, the training target direction
was always 0°.

Time course protocol

Training blocks from six separate groups of six subjects were used to
generate these data. Two groups were trained in the presence of a gain
change of 1/1.5 with either one or eight targets (see Fig. 14). The two
directions were chosen so that movements were inertially equivalent,
because an equal distance in the two directions required the same degree
of shoulder and elbow rotation. The other four groups were trained in the
presence of the 30° CCW rotation but with a different numbers of ran-
domized targets: one, two, four, or eight (see Fig. 1B).

Gain generalization protocol

Two different groups of six subjects underwent the standard experimental
blocks using to either one of two different target sets. One target set was of
eight targets: four placed along a 45° line and four placed along a 135° line.
The targets were spaced at 2.4, 4.8, 7.2, and 9.6 cm from the start position
(see Fig. 4A4). Subjects trained to the 2.4 and 9.6 cm targets in both
directions on 4 separate days but to only one of them on a single day. The
order of training across the 4 d was pseudorandomized. In the testing
block, subjects were tested to the remaining targets in the absence of visual
feedback.

The other target set consisted of targets arrayed in a circle of radius 4.2
cm. The training target was at either 45, 135, 225, or 315° from the start
position (see Fig. 5). Subjects trained to all four of these targets but on
separate days and in random order. Testing was to the remaining targets 0,
+22.5, =45, £90, and 180° relative to the training target and in the absence
of visual feedback.

J. Neurosci., December 1, 2000, 20(23):8916-8924 8917

135°

315° 315°
. ] 1, | ¢

Figure 1. Target arrays for time course of learning experiment. 4, One
(left) and eight (right) training targets for gain learning. The crossed circle
indicates the start position, and the targets are in gray. The targets were
circular and were spaced at 2.4, 4.8, 7.2, and 9.6 cm from the starting
position in both 135 and 315° directions. Single-target training was to the 7.2
cm target. B, One, two, four, and eight training targets for rotation learning.
The targets were arrayed in a circle of radius 4.2 cm.

Rotation generalization protocol

Generalization across directions. The testing blocks for the four groups
trained with different target numbers on the 30° CCW rotation used to
study generalization of learning across directions. For the single-target
group, the arrangement of the training and testing targets is shown (see
Fig. 64). For the two-target set, the testing targets were at 0, +22.5, =45,
+90, and 180° relative to the training target. For the four-target group,
testing was at =22.5 and *45° relative to the training targets. For the
eight-target group, testing was at £22.5° relative to the training targets (see
Fig. 6B). Subjects made 12 visits to each target. They were provided with
refresher feedback to the training target every four movements in the one-,
two-, and four-target testing and every other movement during the eight-
target testing.

Generalization across distances. A separate group of subjects was used to
examine how rotation learning generalizes across distances. The training
block was to a single target at 45° and at a distance of 7.2 cm from the
starting position. The testing block consisted of targets along the same
directional axis but at distances of 2.4, 4.8, and 9.6 cm in the absence of
visual feedback (see Fig. 7, inset). Subjects made 11 visits to the training
target and 5 to the others. They visited the training target every four
movements.

Generalization across arm configurations. A group of subjects was trained
with a 60° CCW rotation with a single target at 45° in a circular array of
radius 4.2 cm. Training continued until subjects could correct their direc-
tional error to less than the angle subtended by the target within two
successive movements using cursor feedback. Subjects were then tested
with the 60° rotation, in the absence of cursor feedback, to the original
training direction and three others (135, 225, and 315°) both in the training
configuration (shoulder = 45° elbow = 90°) and in a new testing config-
uration (shoulder = 90°% elbow = 90°) (see Fig. 84,B). Subjects were
passively moved into the new configuration by displacing their chair laterally
to the left. They maintained their hand position by use of the air jet.

Data analysis

For each movement (from the onset of the change in hand velocity in the
start circle to the velocity minimum when it returned near the starting
position) we determined the hand locations and bin time at various critical
points in the trajectory. These included the peak acceleration and velocity
and the end point of the outward movement. The directional error for each
movement was taken as the difference between the direction of the target
from the initial hand position and the direction of the hand at the peak
outward velocity from the same initial point. For group data, averages and
SEMs were generated for each target.

Gain adaptation time course data were compared across subjects by
normalizing the peak velocities for each subject. For the one-target train-
ing, this was done by dividing each individual peak velocity in a subject’s
training block by the mean peak velocity to that particular target over the
last half of the familiarization block. For training to eight targets, each
individual peak velocity in the training block was divided by the mean peak
velocity (V,,), calculated over the last half of the familiarization block, to
that same Farget distance.

Gain adaptation to a particular target distance was calculated as a
percentage:

300*< . Vok(testing) ) '

Vp(control)
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small but rapidly rising force impulses (Gordon
and Ghez, 1987).

Rotation adaptation was calculated as a percentage:

DirErrV
300 b

where DirErrV, is the directional error at the peak velocity.
Generalization of gain and rotation adaptation to no-feedback testing
targets (FB—) was measured by calculating their percentage adaptation
relative to the adaptation to the training target in the testing block (re-
fresher trials):

100*(1 -

mean % adaptation FB—

100 mean % adaptation FB+"

In the experiment examining the effect of arm configuration, movement-
by-movement joint angle changes were computed from individual hand
extents and directions and from subject limb segment lengths using
trigonometry.

The effect of the gain and rotation changes on variability was examined
by comparing the control and training blocks for the eight-target group.
The variability in the rotation group was obtained by calculating the mean
SD of the directional error at the peak velocity over the last 24 movements
in the control and training blocks. The variability in the gain group was
obtained by calculating the coefficient of variation for the peak velocity
over the last 24 movements.

Path curvature was quantified by subtracting the directional error at the
end point from the directional error at the peak velocity.

The time course data for individual subjects was, in the majority of cases,
fitted better by double exponentials than by single exponentials. This was
ascertained after analysis revealed consistently higher residuals when
fitting individual subject data with single versus double exponentials. Thus,
we chose to fit all our group data with double exponentials.

Differences across conditions were assessed using single- or two-factor
ANOVAs with Bonferroni—-Dunn post hoc tests significant at p < 0.001.
Directional errors were computed relative to the target in question with
clockwise (CW) errors being made negative and CCW errors being made
positive.

RESULTS

Time course of learning gain changes and rotations

At the end of the familiarization block all subjects moved their
hand out and back with straight paths, reversing direction in the
target centers. Velocity profiles during the outward movements
increased smoothly to a single peak before declining more rapidly
to a minimum at movement reversal.

The first movements made after the display gain was increased
were hypermetric on the screen by 46 = 4% (n = 12), close to the

Movement number Target distance (cm)

predicted value of 50%. Thereafter, movements became progres-
sively smaller, and this was paralleled by a reduction in the nor-
malized peak velocities whether targets were at one or at eight
distances (Fig. 24,B). As can be observed in Figure 2 from the
fitted curves, the time course of adaptation across subjects was
similar whether the gain change was learned with one or eight
targets. This was confirmed statistically by comparing the mean
peak velocities over the first and last 24 movements in the two
conditions by a two-factor ANOVA and showing no significant
interaction [F(; 554y = 0.49; p = 0.48].

Peak velocities remained scaled to the target distance before and
after adaptation (Fig. 2C,D), and velocity profiles were similar (Fig.
2D, inset). Subjects adapted to the new scaling factor by a change in
the slope of the relationships of both movement extent and peak
velocity to target distance. These results are similar to those in the
monkey (Ojakangas and Ebner, 1991). The fact that adaptation was
at least as rapid and complete with multiple distances as with a
single-target distance suggests that errors produced in movements
of one extent can be used to readjust the feedforward control of
movements to another.

When the cursor display was rotated, the first movements showed
the expected 30° CCW error. As shown in Figure 3, 4 and B, this
bias was reduced over the ensuing movements, with both single-
and multiple-target directions. Movement paths remained essen-
tially straight and did not change significantly during the course of
adaptation in any of the subjects (mean curvature in the eight-
target group was 0.46 = (0.24° for the familiarization block and
2.96 = 0.23° for the training block). Thus, they did not attempt to
correct the imposed directional errors via feedback during the
movements themselves. Instead, they used visual feedback primar-
ily to change the direction of subsequent movements adaptively.

In contrast to the effect of gain change, an increase in target
number reduced the rate of adaptation to rotations. In Figure 3B it
can be seen that learning a rotation to eight targets takes longer
than learning to a single target (Fig. 34) and is less complete at the
end of 56 movements. We have plotted only the first 56 movements
for the sake of clarity. The difference in the mean directional error
over the first or last 24 movements as a function of the number of
directions trained to (one, four, or eight) showed a highly signifi-
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Figure 3. Rotation learning. Learning was
measured by the progressive reduction in the
directional error at the peak velocity. The last
8 movements of the baseline block are shown
followed by 56 consecutive movements with
the 30° CCW rotation. Each plot shows group
data. A, Learning curve for rotation learning to
a single target. B, Learning curve for rotation
learning to eight targets. C, Learning curves
for rotation learning with single, four, and
eight targets, plotted for the first 18 moves of
the training block. D, Learning curves for ro-
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cant interaction by two-factor ANOVA [F(; 5., = 16.53; p <
0.0001].

One explanation for the slower learning of the rotation with
multiple targets could be that directional errors made moving to a
given target can only be used adaptively to correct movements in
the same direction. If this were so, the rate of adaptation should
decrease in proportion to the number of target directions but
remain the same when plotted as a function of the number of visits
to the same target. This was indeed the case (Fig. 3C,D). Adapta-
tion with one, four, and eight targets showed no significant differ-
ence in the mean directional error over the first 18 visits to the
same target by single-factor ANOVA [F (5 151, = 1.67; p = 0.19].
This suggests that, unlike extent errors, directional errors are
computed separately for each target direction and only used to
adjust movements in the same direction.

In a previous study (Pine et al., 1996), we found that although
extent variability did not change during adaptation to a gain change
there was a marked increase in directional variability during the
course of adaptation to rotations. This was not the case here. In the
eight-target gain experiment, a two-factor ANOVA showed that
the coefficient of variation decreased with target distance at both
the control and new gains [F(;3,, = 4.82; p = 0.007], but the
interaction with condition was not significant [F(; 3, = 0.8; p =
0.5]. In the eight-target rotation condition, the mean SDs in direc-
tional error for the last 24 movements of the control and training
trials were not significantly different (unpaired ¢ test, p = 0.46). We
believe the difference between the two studies is attributable to the
differences in feedback conditions. In the former study, feedback
was in the form of knowledge of results; i.e., hand paths were
displayed after the completion of each movement, rather than with
continuous cursor feedback. In addition, the time between move-
ments was more variable in the previous study, because the start
was triggered manually (ranging from 5 to 6 sec instead of a fixed
1.25 sec). We have since observed that rotational adaptation tends
to decay very rapidly in the few seconds between trials during the
early phases of learning. We therefore attribute the increased
variability of our previous study to the use of knowledge of results
and to variable intertrial intervals.

Generalization of gain adaptation

As noted previously, the unchanged rate of adaptation to gain
changes when errors are generated in movements of various extents

Movement number

: : J tation learning plotted for consecutive moves
10 15 20 to a single target for single-, four-, and eight-
target training.

suggests that gain adaptation generalizes across target distances.
Moreover, the hypothesis that such movements reflect mapping of
the two-dimensional work space in a two-dimensional vector space
raises the possibility that learning might generalize across direc-
tions as well. We first addressed this by training subjects with a
single target and examining movements to targets at three other
distances in two directions. In previous work we have shown that,
despite systematic directional variations in limb inertia, subjects
program the same impulse of force at the hand (Gordon et al,
1994b). This results in a lower peak velocity in the 135° direction,
which has higher inertia because it requires motion of both the
elbow and shoulder, compared with the 45° direction, which has
lower inertia because it requires only elbow motion. However,
end-point errors do not result because there is compensation in the
movement time. We hypothesized that the CNS could only gener-
alize across directions if these dynamic properties are taken into
account.

Adaptation, although incomplete relative to the training target,
was uniform across target distances (Fig. 44). There was no sig-
nificant effect of training target distance [F; ;55, = 0.04; p = 0.84]
or direction [F(y 155y = 2.22; p = 0.14] on the percent adaptation
(two-factor ANOVA), so we combined the data for all four training
targets. A two-factor ANOVA showed no significant effect of test
target distance [F 5 160y = 0.04; p = 0.99] or direction [F(; ;50, =
0.42; p = 0.51] on the percentage adaptation. This was despite clear
differences in the mean peak velocities and movement times at the
new gain in the two testing directions as predicted from inertial
anisotropy. The peak velocities were scaled but systematically lower
in the high forearm inertia direction (135°) (Fig. 4B). However, the
movement times in the two directions were inversely related to the
peak velocities (Fig. 4C). Thus a gain relation learned with a
single-target distance leads to the acquisition of a scaling rule that
generalizes across distances and across two inertial configurations.

To verify that gain learning generalizes across all directions we
examined learning of the gain change to a single-target distance
and tested multiple directions arrayed in a circle. There was no
significant difference in the percent adaptation by two-factor
ANOVA for testing direction [F 4 164y = 2.4; p = 0.14] or training
direction [F(, 164y = 0.74; p = 0.47] despite some falloff from the
trained target, as illustrated in Figure 5. Thus, learning the gain in
a single direction generalizes to all directions.



8920 J. Neurosci., December 1, 2000, 20(23):8916-8924

135°

45°

>

Adaptation
® o
.

[=)]
T

40—

W percent

40

Pk Velocity (cm/s)

0

135°

Movement time (msec)

250~

1 I 1 | I
0 2 4 6 8 10
Target extent (cm)

Figure 4. Gain generalization across multiple target distances. A, Bottom,
The plot is of mean (=SEM) group data showing the percent adaptation to
untrained target distances relative to adaptation to the training targets. The
data are collapsed for the four different training targets. Top, The four
different training targets (circles) are shown in gray, and the testing targets
are in white. On any given training day only one of the gray targets was
trained to, and the remaining seven targets were used for testing. B, Mean
peak velocity for the untrained targets is plotted against target distance in
the two testing directions. C, Mean movement time for the untrained
targets is plotted against target distance in the two testing directions.

We examined generalization of gain adaptation across the work
space in two subjects using the two arm configurations described in
Materials and Methods for rotation generalization. There was no
significant difference in the adapted peak velocities for the two
configurations (p = 0.71). Therefore, gain generalizes across the
work space as well as across distance and direction.

Generalization of rotation adaptation
Generalization across directions

As noted previously the lower rate of adaptation to rotation when
the number of target directions increased suggested that learning
was restricted to the direction of the target toward which movement
had been made. We tested this hypothesis by examining directional
errors to targets in untrained directions without visual feedback
after training with one, two, four, or eight targets. See Figure 6B,
top, for training target arrays. As predicted by the time course data,
we found that training in a single direction led to only local
learning of the rotation. It should be noted that the degree of
adaptation at the end of the single-target rotation training block
(81%) (Fig. 34) was not significantly different from that achieved at
the end of the single-target gain training block (89%) (Fig. 24).
The percent adaptation falls off very steeply as the test target
direction deviates from the training target direction. The same
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Figure 5. Gain generalization across multiple directions after training in a
single direction. Bottom, The plot is of mean (=SEM) group data showing
the percent adaptation to untrained directions relative to the training
target. Top, The gray targets show the four different target directions for 4
different training days. The testing targets are in white.

falloff in adaptation was found with four different training direc-
tions and was symmetric around the training direction (Fig. 6A4).
This was confirmed by a two-factor ANOVA showing no significant
effect for training target direction [F(5 0, = 1.2; p = 0.36] and
CW/CCW testing directions [F(5 05y = 1.2; p = 0.31]. We thus
combined data from the four training target directions and col-
lapsed CW/CCW testing directions of equal magnitude in subse-
quent analyses.

As we increased the number of training directions, generaliza-
tion increased with full generalization at eight targets (Fig. 6B).
The effect of the number of training directions was highly signifi-
cant by a single-factor ANOVA [F 5 559y = 59.9; p < 0.0001]. This
cannot be explained by differences in performance to the training
targets. Despite more complete adaptation at the end of single-
target training compared with eight-target training, there was no
significant difference in performance to the training target(s) dur-
ing testing for the four groups [single-factor ANOVA, F o) =
0.69; p = 0.57]. Thus, as the number of training directions in-
creases, there is increased generalization to untrained directions.

Generalization across distances

The finding that the learning of the rotation in a single direction
does not generalize across directions raises the possibility that it is
only a unique stimulus-response relationship that is being learned,
i.e., a unique response to a particular target distance and direction.
This, however, was not the case. We again trained subjects to a
single target but tested them to three other target distances in the
same direction. The performance was uniform across distances
with no significant difference in directional error [single factor
ANOVA, F 3 490, = 0.79; p = 0.50] (Fig. 7).

Thus, in contrast to gain learning, the learning of a rotation with
a single-target direction generalizes across distance but not direc-
tion. Generalization across directions requires the sampling of
directional errors across multiple directions. It is possible that the
improving performance in untrained directions as the number of
training targets increases is caused by interpolation of local
learning.

We performed one final experiment on a separate group of six
subjects to address the issue of interpolation further. Subjects were
trained with only two targets separated by 45°. They reached
approximately the same level of performance to these targets as the
one-, two-, four-, and eight-target groups did to their training
target(s). We then tested them in the absence of feedback to a
single target interposed between the training targets, i.e., separated
by 22.5° as in the eight-target group. If subjects acquired the
untrained direction by interpolation then we would have expected
complete generalization to the interposed untrained target as in the
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Figure 6. Rotation generalization. A, Generaliza-
tion across multiple directions after training in a
single direction. The directional data are relative
to the training target. Bottom, The plot is of mean
(=SEM) group data showing the percent adapta-
tion to untrained directions relative to the training
target. Top, The four different training directions
(45, 135, 225, and 315°) for 4 different days are
shown by the gray symbols. The positioning of the
testing targets (in white) is shown. B, Generaliza-
tion across multiple directions after training in
one, two, four, and eight directions. Bottom, The
plot is of mean (=SEM) group data showing the
1 relative percent adaptation in the untrained direc-
tions relative to the trained directions. When there
was more than one training target, the mean per-
formance to all the training targets was used to
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Figure 7. Rotation generalization across multiple target distances after
training to a single distance of 7.2 cm. The plot shows mean (=SEM) group
data of the percent adaptation to untrained distances 2.4, 4.8, and 9.6 cm
relative to the training distance. Inset, The target array is shown with the
training target in gray.

eight-target case. Instead, however, we saw a mean falloff in adap-
tation at the 22.5° direction, not significantly different from that
seen in the four-target group (83.2 = 8 vs 83.8 = 7%). This result
suggests that a successful interpolation rule depends on a richer
degree of information outside the interpolated area, as is afforded
by the eight-target training.

Generalization across the work space

The demonstration that in adapting to rotation with targets in a
single direction subjects learn a rule that can be applied across
several target distances raises the question of whether this rule is
learned in extrinsic or in intrinsic space. The rule could represent
scaling of a learned joint profile with a linear synergy of shoulder
and elbow muscle contractions (Bock, 1994; Gottlieb et al., 1997) or
learning of a new directional axis in extrinsic space. The local
learning of rotation across directions could be interpreted as sup-
porting the possibility of learning in joint space. This is because a
particular shoulder—elbow synergy would only be expected to apply
over a narrow directional range. In a recent paper demonstrating
limited generalization of a visuomotor transformation, the authors
comment that the decay could have been in extrinsic or in joint-
based coordinates (Ghahramani et al., 1996).

To answer this question we trained subjects on a 60° CCW
rotation with a single target in one arm configuration and then
tested them in another arm configuration but in the same target
direction. If subjects learned a spatial axis in extrinsic space they
would remain accurate in the new arm configuration. However, if
they learned the rotation in joint space they would no longer be
accurate to the target direction in the new arm configuration
because the joint angle changes would no longer be appropriate.

1
45 90 135 180 0 45 90
Target direction (%)

calculate the relative adaptation in untrained di-
rections. Data were collapsed for clockwise and
counterclockwise directions. Top, Training targets
are shown in gray, and testing targets are in white.

T 1
135 180

The distribution of movement directions for all movements
across all subjects shows that subjects adapted almost completely to
the 60° CCW rotation in the training configuration (Fig. 8C). The
histogram is centered on a movement direction of 355°, indicating
adaptation to 50° of the imposed rotation (full adaptation would
have the subjects at 345° on the tablet). When subjects shifted to the
new testing configuration they remained accurate in the training
direction (Fig. 8B). The histogram is centered on a movement
direction of 350° (Fig. 8 D). This represents a shift of 5° CW for all
movements to the training target as compared with the training
configuration. [Previous work in our laboratory (Ghilardi et al.,
1995) has shown that there is a systematic clockwise bias imposed
on reaching movements when the hand is displaced laterally to the
right of the body midline. Indeed, in this previous study one of the
arm configurations studied was the same as our testing configura-
tion in the current experiment, and the mean bias was —5.1 = 1.3°.
When we subtract this anticipated bias from the movement direc-
tions in the training configuration and compare the resulting ex-
pected movement directions with actual directions in the testing
configuration, there is no significant difference (unpaired ¢ test,p =
0.12). Thus, the direction of movement in the testing configuration
is the same as in the training configuration.] Because the elbow
angle remained the same in the two configurations and the shoul-
der was rotated from 45 to 90°, then the anticipated new direction
in joint space would be 45° CW of the training direction, i.e., 300°
(see Fig. 8B). Thus, the average movement direction across all
subjects was distributed around the anticipated movement direc-
tion if learning were of the training direction in extrinsic space and
not distributed around the anticipated movement direction if learn-
ing had occurred in joint space.

Another way of analyzing the data was to calculate the joint
angle changes at the shoulder and elbow for each individual move-
ment from the known movement direction and extent and from the
subjects’ arm segment lengths. Figure 9 shows that the elbow and
shoulder angle changes were significantly different for the two arm
configurations (mean change in shoulder angle = 14.5° mean
change in elbow angle = —8.6% both at p < 0.0001, unpaired ¢
tests). The magnitude of the differences for these angle changes in
the two configurations was such that it is not conceivable that the
same patterns of joint torques could have generated them.

DISCUSSION

The experiments presented here demonstrate categorical differ-
ences in the time course and generalization of adaptation to in-
duced errors in movement extent and direction. These differences
suggest that the brain processes errors in extent and direction
separately and in computationally distinct ways during learning.
Our findings add to the idea that reaching movements are planned
as a vector centered on the hand whose extent and direction are
established via learning a scaling factor and reference axes.

The preservation of single peaked velocity profiles and straight
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Figure 8 Schematic of experimental
paradigm. A, Training configuration:
shoulder at 45° and elbow at 90°. The
arrows indicate the hand directions be-
fore and after adaptation with a 60° CCW
rotation. B, Testing configuration: shoul-
der at 90° and elbow at 90°. The large
arrows in the test configuration indicate 80
the predicted hand directions if adapta-
tion were absent (fop), if learning were in
joint space (bottom), or if learning were
in extrinsic space (middle). The smaller
filled arrows show the actual mean move- 40+
ment direction for each subject. C, Cu-
mulative histogram of the direction of all
movements to the 45° target for all sub-
jects in the training configuration. D, Cu-
mulative histogram of the direction of all 305 325 345
movements to the 45° target direction for
all subjects in the testing configuration.
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Figure 9. A scatter plot of the elbow versus shoulder angle change for the
training and testing configurations for all six subjects. The filled circles
represent the training configuration, and the open circles represent the
testing configuration.

hand paths during adaptation to gain and rotations suggests that
errors are mainly corrected using adaptive or feedforward mecha-
nisms rather than via “on-line” feedback. Extent errors are used to
adjust the pulsatile activation of segmental motor neurons acceler-
ating the hand on successive trials and thereby rescaling the spatial
mapping of target location to vector magnitude. Directional errors
are used to adjust progressively the reference axis used to compute
the directional error itself.

Although the time course of adaptation was sometimes fitted
adequately with single-exponential functions, a double-exponential
fit was typically needed to capture the initial rapid change and the
later gradual reduction in mean error. This suggests two processes
operating during the course of adaptation. It may be speculated
that the initial rapid decline, when the errors are most salient,
reflects a strategy intended to reduce visual errors rapidly with
each subsequent movement. After errors come within the envelope
of movement-to-movement variability, a second more gradual pro-
cess appears to be implemented, in which successive changes depend
on evaluation of errors made on several successive movements.

Consistent with the fact that the magnitudes of the gain and
rotation perturbations were selected to produce equal linear errors,
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the time course of adaptation for a single target was the same.
However, the rate of adaptation was influenced differently when
multiple targets were presented. Adaptation to the gain change
occurred at the same rate for multiple target distances compared
with one. With rotation, increasing target directions from one to
eight produced proportional reductions in the rate of adaptation so
that the time course of adaptation to any single target remained
identical. This suggests that directional error information is being
stored for the eight targets separately rather than being used to
form a reference frame that might allow error information from
one direction to be used to correct errors in another direction. This
issue is discussed further below.

A prediction generated by the different effects of increased target
numbers on the rate of adaptation is that the learning of a gain
should generalize to targets at previously unvisited distances
whereas learning rotation with a single target should generalize
poorly to novel target directions. This was indeed what we found
with complete gain generalization and only local learning of a
rotation.

When two learning processes obey different rules for generali-
zation, it suggests that the two processes are represented differently
in the brain. Our results for gain generalization via scaling of the
peak velocity across directions and distances are largely consistent
with previous findings using movement end points (Bock, 1992;
Bock and Burghoff, 1997) and a study of amplitude generalization
in a velocity-dependent force field (Goodbody and Wolpert, 1998).
The complete generalization seen for gain suggests that the scalar
parameter, relating target distance to the amplitude of an activa-
tion profile, is explicitly estimated after adapting to a single target
and applied to the whole work space. This may occur because the
relationship between peak velocity and target distance is approxi-
mately linear throughout the work space under normal conditions.
Studies of prism adaptation (Bedford, 1993) and vertical phoria
adaptation (Schor et al., 1993) have also shown that generalized
mappings are learned preferentially over isolated input—output
relationships when linear interpolation or extrapolation is possible.
We expect that subjects would find it difficult to learn two separate
gains in two directions, distances, or configurations. However, spe-
cific experiments would have to be done to determine this.

In contrast, in the case of learning the rotation, the parameter,
i.e., the angle of rotation, cannot be estimated from learning a
single input-output pair. Computationally, the problem is “ill-
posed” and requires function approximation, for example, radial
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basis functions constrained for smoothness or, equivalently,
multiple-layer perceptions (Poggio and Gorosi, 1990). These com-
putational models yield intermediate degrees of generalization and
have been found to correspond reasonably well with experimental
results (Imamizu et al., 1995; Ghahramani et al., 1996). There is
also psychophysical evidence to suggest that there are unique
processing constraints for visuomotor and mental rotations as
compared with other cognitive tasks (Pellizzer and Georgopoulos,
1993).

We found that performance to untrained directions was the same
as that to trained directions only with eight equally spaced training
directions. There was, however, a statistically significant improve-
ment in the untrained directions as the number of training targets
increased. This suggests that there is increasingly successful inter-
polation of local learning as more directions are sampled. Our time
course data, showing no enhancement in the rotation learning rate
with eight targets compared with one, suggest storage of errors and
learning of eight local rules in separate working-memory buffers.
This raises the possibility that the interpolation rule is not in effect
early in learning (we could only compare training for the first 18
visits to a target) and may only begin to be established later. In
addition, we have shown that even when adapting to a rotation with
a single target, subjects are able to generalize across distances and
arm configurations. This argues against tabular learning and more
for learning of a directional vector. This vector can then be multi-
plied by a scalar for generalization across distances and also be
translated across the work space.

Thus, we posit that whereas a new global gain parameter can be
estimated from a single input—output pair, rotation parameters can
only be estimated locally and that a full reference frame rotation is
achieved by interpolation. These results strongly suggest that move-
ments are planned as a vector with independent specification of
extent and direction and that this is because of differences in the
computational constraints for learning scaling factors and reference
axes in extrinsic space. This clear separation of adaptation to
extent and directional errors would not be expected if trajectory
planning occurred in joint space. This separation between direc-
tional and scaling specification is consistent with what is known
from single-unit studies demonstrating populations of neurons with
preferred directions of movement (Georgopoulos et al., 1982) but
with speed acting as a gain factor on the directional tuning curve
(Moran and Schwartz, 1999). Rescaling movements in a given
direction would involve up or down modulation of the activity of
the same neuronal population, whereas a new directional axis
would require either a new pattern of activity or a new population
of neurons altogether.

We did not directly address the origin of the extrinsic reference
frame, but previous work in our laboratory suggests that trajectory
errors are computed relative to the hand rather than the shoulder
or body midline (Gordon et al., 1994a). This conclusion is sup-
ported by our result showing that the learning of a rotation re-
mained invariant around the hand despite a 45° rotation around the
shoulder. However, a hand-centered reference frame for trajectory
specification is compatible with concomitant specification of initial
hand position and target position in an extrinsic egocentric refer-
ence frame. Indeed, we would argue that the hand-based reference
frame is rotated relative to the egocentric reference frame.

The generalization of gain learning across directions is of inter-
est in the context of inertial anisotropy. Examination of mean peak
velocities and movement times across two testing directions re-
vealed that they differed in a manner anticipated from previous
work on inertial anisotropy (Gordon et al., 1994a). In the high
inertia direction (135°), the movement times were significantly
longer, and the peak velocities were significantly lower when com-
pared with the low inertia direction (45°; Fig. 4). However, despite
differences in these kinematic planning variables, adaptation was
the same in the two testing directions. A recent model has shown
that direction-dependent variations in movement time, which com-
pensate for inertial anisotropy, can be attributed to intrinsic plant
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properties and segmental feedback (E. Todorov, personal commu-
nication). This means that for gain to generalize across directions
the CNS must have a model of anisotropic effects. This conclusion
is similar to that of Sabes et al. (1998), but although they argue that
this is only true for certain cases such as obstacle avoidance, our
result suggests that dynamics are taken into account in all point-
to-point movements. Vectorial planning could not specify move-
ment extent accurately without an internal dynamic model. In this
sense, dynamics are taken into account so that only kinematic
variables need to be specified in the planning process. This inde-
pendence of acquisition of a rescaling rule from inertial anisotropy
is consistent with our recent demonstration that learning a screen
cursor rotation is independent of learning novel inertial dynamics
(Krakauer et al., 1999a).

In conclusion, the data suggest that accuracy in reaching move-
ments is achieved by using errors in extent and direction to update
adaptively a vectorial representation of intended movement in
extrinsic space.
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